Research Associate or Senior Research Associate in Machine Learning University of Bristol School of Computer Science, Electrical and Electronic Engineering and Engineering Maths United Kingdom

Job number: ACAD103998
Division: School of Computer Science, Electrical and Electronic Engineering and Engineering Maths
Contract type: Open Ended
Working pattern: Full time
Salary: £33,199 -£42,036
Closing date for applications: 16-Jun-2019

 

About us: 

The SPHERE project (a Sensor Platform for HEalthcare in a Residential Environment), funded by EPSRC, has been developing a unique integrated platform of sensors to deploy in people's homes to monitor their health and wellbeing during everyday life (irc-sphere.ac.uk). Within this exciting interdisciplinary project we are looking for an exceptional candidate to strengthen our data mining capability.

The successful candidate will work on robust, sustainable data integration and machine learning techniques for mining data from the diverse range of ambient, video, and on-body sensors deployed within this large project. S/he will build on the work done to date by the data mining and data fusion team, as well as on a range of relevant machine learning and data mining expertise in the Bristol Intelligent Systems Laboratory.

 

For this post we are particularly looking for candidates with relevant experience in learning from varying degrees of supervision and/or leveraging synthetic data. The first topic anticipates cases in which a perfect ground truth cannot be obtained, and is related to learning from weak and noisy labels, modelling annotator variability, model-based learning, etc. The second topic is concerned with synthetically generated but realistic data matching different contexts and environments and builds upon current machine learning research such as transfer learning and generative adversarial models. The ideal candidate will therefore have a strong research track record in machine learning and data mining with particular experience in some of these topics; please expand on this in your cover letter.

For informal enquires contact: Professor Peter Flach, Peter.Flach@bristol.ac.uk

We appreciate and value difference, seeking to attract, develop and retain a diverse mix of talented people that will contribute to the overall success of Bristol and help maintain our position as one of the world's leading universities.


If you apply for this position please say you saw it on Computeroxy

Apply

All Jobs

FACEBOOK
TWITTER
LINKEDIN
GOOGLE
https://computeroxy.com/research-associate-or-senior-research-associate-in-machine-learning,i7531.html">

ubc reklama

Anu

cambridge

geneva

kuwait

Melbourne

nottingham

Nus

sfu

southampton

texas tech

Toronto

uni copenhagen

unsw

Uwo